
Transportation Research Part B 113 (2018) 143–163

Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier.com/locate/trb

Effects of maximum relaxation in viscoelastic traffic flow

modeling

Jian Maa,c, C.K. Chanb, Zhongbao Yea, Zuojin Zhua,b,∗

a Faculty of Engineering Science, University of Science and Technology of China, Hefei 230026, China
bDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
cNaval Architecture and Civil Engineering, Jiangsu University of Science and Technology, Jiangsu Province 215600, China

a r t i c l e i n f o

Article history:

Received 30 March 2017

Revised 25 March 2018

Accepted 21 May 2018

Keywords:

Viscoelastic modeling

Ring road traffic flow

Spatial-temporal patterns

Shock and rarefaction waves

a b s t r a c t

Viscoelastic modeling is used to describe traffic flows in analogous to non-Newtonian fluid

flows, where first and second order linear viscoelastic approximations are employed. This

paper presents the effects of maximum relaxation in traffic flow modeling by demonstrat-

ing numerical results of single lane ring road traffic flows. Numerical results show that

there is a wide spectrum of spatial-temporal pattern formation phenomena in traffic sys-

tem. Self-organization plays a crucial role in the determination of traffic flow patterns and

a different initial density causes a completely distinct traffic flow pattern. Predicting traffic

flow acceleration is useful for checking reliability of the simulation and maximum relax-

ation brings about some observable but non-significant effects on traffic flow patterns.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In a modern world, the growth of highway networks between cities and widening of road traffic have become channels of

transport logistics between cities, and urban/rural areas. It has great impact on development of urban and rural economies.

Therefore, traffic flows have been extensively studied, resulting in the occurrence of many traffic flow models, among which

the Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956) is the simplest and is capa-

ble of capturing crucial flow features of highways and predicting traffic shock waves with relatively steep wave fronts as

reported by Kühne and Michalopoulos (2001). It has been extended to describe a behavioral theory of multi-lane traffic

flow (Daganzo, 2002a; 2002b), to predict traffic hysteresis (Wong and Wong, 2002), evolution of traffic waves (Zhu and

Wu, 2003) and critical transition of traffic flow bottlenecks (Chang and Zhu, 2006).

Furthermore, Euler model (Payne, 1971), gas-kinetic-based model (Helbing and Treiber, 1998; Hoogendoorn and Bovy,

2000), cluster effect model (Kerner and Konhäuser, 1993), and generic model (Lebacque, et al., 2007; Zhang, et al., 2009;

Lebacque and Khoshyaran, 2013) have been proposed. High-order models have also been used to explain the vehicular flow

phenomena and traffic wave spreadings successfully.

Despite some critical comments (Daganzo, 1995), there were many remarkable applications (Jin and Zhang, 2003; Green-

berg, 2004; Zhang and Wong, 2006; Xu, et al., 2007; Ou, et al., 2007; Qiao, et al., 2014) and developments (Klar and We-

gener, 2000; Aw and Rascle, 2000; Kiselev, et al., 2000a; Zhang, 2003; Lebacque, et al., 2007; Zhang, et al., 2009; Mammar,

et al., 2009; Ngoduy, 2012, 2013; Zhu and Yang, 2013; Spiliopoulou, et al., 2014, 2015; Bogdanova, et al., 2015; Hoogendoorn,

et al., 2015; Smirnova, et al., 2016, 2017). Patterns of traffic flows have been mathematically described by car-following mod-

∗ Corresponding author at: Faculty of Engineering Science, University of Science and Technology of China, Hefei 230026, China.

E-mail address: zuojin@ustc.edu.cn (Z. Zhu).

https://doi.org/10.1016/j.trb.2018.05.013

0191-2615/© 2018 Elsevier Ltd. All rights reserved.



144 J. Ma et al. / Transportation Research Part B 113 (2018) 143–163

els, cellular automaton models (Nagel and Schreckenberg, 1992; Helbing and Huberman, 1998; Chowdhury, et al., 2000),

gas-kinetic models and fluid-dynamical models (Nagatani, 2002).

By using the concepts of Lagrangian mass coordinate and anticipatory acceleration, Greenberg (2004) has analyzed a

class of second-order traffic models, and found that these models support stable oscillatory traveling waves typically ob-

served on a congested roadway. With the gas-kinetic based approach (Helbing and Treiber, 1998; Hoogendoorn and Bovy,

2000; Ngoduy, 2012), a macroscopic model has been developed (Ngoduy, 2013) to describe the traffic flow where intelligent

vehicles move close to each other as compared with manual vehicles and operate in a form of many platoons each of which

contains several vehicles. A stochastic conservative model in continuous time over discrete space, following a misanthrope

Markovian process has been studied by Tordeux et al. (2014). It was reported (Lebacque and Khoshyaran, 2013) that with

the generic second order model (GSOM), the family of traffic models can be expressed as a system of conservation laws; a

proper Lagrangian formulation of the GSOM model can then be reformulated as a Hamilton–Jacobi equation, the solution of

which can be expressed as the value function of an optimal control problem. For models of the GSOM family, an adequate

framework for effective numerical methods has been obtained (Costeseque and Lebacque, 2014).

Xu, et al. (2007) have analytically investigated a wide cluster solution of Euler type traffic flow models and found that

it is not admitted in some traffic flow models in literatures. For those models which admit the wide cluster solution, they

thoroughly discussed the relationship between two important control parameters and the critical densities which divide an

equilibrium solution into stable and unstable regions.

A novel formulation of non-equilibrium traffic flow models based on their isomorphic relation with optimal control prob-

lems was given by Li and Zhang (2013). It demonstrated that with the new formulation, generic initial-boundary conditions

can be conveniently handled so that a simplified numerical scheme for non-equilibrium models can be devised.

In this paper, first order viscoelastic traffic flow models (Smirnova, et al., 2014a; Bogdanova, et al., 2015) and second

order linear viscoelastic approximation (Zhu and Yang, 2013) are described. Both models are validated by the model derived

from the car-following rule (Zhang, 2003), and numerical results are obtained with the same road operational conditions.

With viscoelastic models, the effects of maximum relaxation in traffic flow modeling with numerical tests for ring road

traffic flows are investigated. For cases of fixed vehicle length l , braking distance Xbr, and characteristic length of flows l0,

with different viscoelasticity γ , and initial density distribution characterized by ρ0/ρm, the effects on density, speed and

their fluctuations on the ring road are compared with available measured data.

2. Viscoelastic models

In viscoelastic traffic flow modeling, an analogy to linear viscoelastic fluid flow is used, in which shear stress is given by

Ts =
∫ ∞

0

f (s)H(s)ds, (1)

where f(s) is a memory function. With experimental observation of the relaxation of shear stress of macromolecular polymer

and theory of micro-rheology (Wagner, 1978), the memory function f(s) may be written in the form of

f (s) = G

N∑
1

1

τ j

exp (−s/τ j), (2)

where G denotes the modulus of fluid elasticity, τ j represents the jth order relaxation time.

As reported by Daganzo (1995), vehicles mainly react to downstream traffic conditions instead of prevailing traffic

conditions and slow vehicles virtually remain unaffected by fast vehicles. These properties led to the derivation of a

third dynamic equation for velocity variance (Helbing, 1996), as reported in the continuum modeling of multi-class traffic

flow (Hoogendoorn and Bovy, 2000). In the present viscoelastic traffic flow model, driver behavior has not been considered

in detail as in the multiclass generalization of the single-class gas-kinetic equation (Paveri-Fontana, 1975) by Hoogendoorn

and Bovy (2000). Vehicles are only taken as linear viscoelastic fluid particles, with the complicated vehicular movement

described by pressure and viscoelasticity used in fluid mechanics.

In this paper, several assumptions are made in discussing the effects of maximum relaxation; namely (i) ramp flow effect

is neglected; (ii) road capacity is insensitive to the drivers; (iii) vehicles are treated as linear viscoelastic fluid particles (Zhu

and Yang, 2013; Smirnova, et al., 2014a; Bogdanova, et al., 2015).

The constitutive equation of a general linear viscoelastic fluid flow is given by

T = −pI + G

N∑
j=1

∫ ∞

0

1

τ j

exp(−s/τ j)H(s)ds, (3)

where T(= −pI + Ts) and p are stress tensor and traffic pressure respectively and H(s) is the Finger deformation tensor. For

the maximum relaxation order denoted by N, the Finger deformation tensor is given by H(s) = ∑N
k=1(−1)k+1 sk

k!
Bk , where

Bk is the White-Metzner tensor, and s is the elapsed time period as given by Han (2000).

Traffic pressure p has been employed in Payne-type models (Payne, 1971, 1979) to remedy the LWR model (Lighthill

and Whitham, 1955; Richards, 1956). Drawback of the LWR model includes complete admission of the traffic fundamental
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diagram, inability to capture the formation of local structures, phantom-jams, hysteresis, and stop-start waves under specific

traffic conditions. In addition, discontinuous solutions result irrespective of smoothness of the initial solutions (Lyrintzis,

et al., 1994; Kerner, et al., 1996; Hoogendoorn and Bovy, 2000). The traffic pressure was treated as a linear function of

traffic density in the work of Liu, Lyrintzis and Michalopoulos (1996), which was assumed to have a general function of

traffic density in the nonequilibrium traffic flow model (Zhang, 1998).

In the macroscopic gas-kinetic-based tr affic flow model (GKT model) (Helbing and Treiber, 1998; Treiber, Hennecke and

Helbing, 1999), traffic pressure was considered as a product of traffic density and velocity variance θ , i.e., p = ρθ, where

θ = A(ρ)u2e , with A(ρ) being an empirical function of traffic density ρ , as also seen in Delis, et al. (2014). In the traffic flow

model of Aw and Rascle (2000), similar to an expression used in gas dynamics, p∝ρκ was suggested, where κ is a positive

constant to be determined be means of nonlinear analysis (Ou, et al. 2007). In particular, in the class of second-order traffic

models analyzed by Greenberg (2004), the traffic pressure-gradient term is alternated by the anticipatory acceleration.

By further studying the relationship between microscopic car-following and macroscopic fluid-like behavior of traf-

fic flow, a second-order continuum model with viscosity was developed (Zhang, 2003). In the conserved higher-order

anisotropic traffic flow model (Zhang, Wong and Dai, 2009), a pseudo-density transformed from velocity is introduced.

In particular, traffic viscosity effect is completely ignored, and pressure is taken as a function of the pseudo-density and

the relaxation of velocity to equilibrium. It was mentioned that in traffic flow modeling, different choices for the pressure

and fundamental diagram are possible, as traffic flow is a very complicated system of self-driven particles (Helbing, 2001),

implying that a given choice for the pressure and fundamental diagram is suitable to a certain scenario only. In generic sec-

ond order modeling (Lebacque and Khoshyaran, 2013), the velocity equation is replaced by a governing equation of driver

attribute I, with the driver dependent fundamental diagram given by �(ρ, I) = ρ�(ρ, I), without adopting the concept of

traffic pressure which is just a notation, but does not exist physically (Smirnov, et al., 2014; Smirnova, et al., 2017).

As suggested by Zhu and Yang (2013), using second-order approximation (N=2) , and the expression
∫ ∞
0 sk exp (−as)ds =

k!
ak+1

, the traffic flow stress can be expressed as:

T = −p+ G(τ1 + τ2)B1 − G(τ 2
1 + τ 2

2 )B2, (4)

As described by Han (2000), B1 = 2ux and

B2 = B1t + uB1x − 2B2
1. (5)

Since τ j can be approximated by τ 1/j
2, the total relaxation time can be approximated as τ ≈ τ1 + τ2 = 1.25τ1, such that

τ1 = 0.8τ, and τ2 = 0.2τ . Noting that fluid elasticity is given by σ = 2G(τ 2
1

+ τ 2
2
)/ρ, dynamic viscosity is given by µ = ρν =

2Gτ, we can express elasticity as σ = ν(τ 2
1 + τ 2

2 )/τ, or

σ = ν(τ − 2τ1τ2/τ ) = 0.68ντ. (6)

According to traditional traffic flow modeling, the general form of the force acting on vehicular clusters can be formulated

as

F = (qe − q)/τ + Tx, (7)

where qe is the flow rate under the equilibrium traffic state, and Tx is the relevant surface force related to the traffic flow

stress.

Based on the traffic fundamental diagram used by Kiselev et al. (2000b), for further modifying the traffic flow rate qe at

density beyond second critical value ρc2, denoting the second critical speed of traffic flow by uc2(ρc2) = cτ /�, then qe can

be written as

qe =
{

v fρ, for ρ ≤ ρ∗,
−cτ ρ ln(ρ/ρm), for ρ∗ < ρ ≤ ρc2,

Bρ{1 − sech[� ln(ρ/ρm)]}, for ρc2 < ρ ≤ ρm,

(8)

where ρc2/ρm = exp(−1/�), and B = uc2/{1 − sech[� ln(ρc2/ρm)]}, depends not only on the second critical density and

speed but also on the speed ratio � and jam density ρm. The density dependance of equilibrium flow qe is postulated

according to the flow peculiarity that any flow state in over the 2nd critical traffic is dominated by jams propagation and

interactions with spontaneously generated jam and rarefaction waves. The maximum permissible density ρ∗ at free flow

speed vf is

ρ∗ = ρm exp(−v f /cτ ). (9)

As safe traffic density itself implies that the distance between vehicles are not shorter than the braking distance Xbr, the

density ρ∗ is then defined by the equality

ρ∗ = ρm[1 + Xbr/l]
−1, (10)

which is generally referred to as 1st critical density or 1st transitional density. Combining Eqs. (9) and (10), we obtain

cτ = v f / ln[1 + Xbr/l]. (11)

The traffic state Eq. (8) is shown in Fig. 1, where ρc2 is the 2nd critical traffic density, above which traffic flow becomes

stable again.
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Fig. 1. Fundamental diagram given by Eq. (8).

It is noted that at ρ∗ and ρc2, the function or the kinetic speed q′
e(ρ) is discontinuous, which might not bother numerical

simulations but might give troublesome in the mathematics for discussion.

Traffic pressure is defined by

p = pm(1 − α)(ρ/ρm)/[1 − α(ρ/ρm)], (12)

where α = lρm, is the product of average vehicle length l and ρm, pm are jam density and jam pressure respectively. It is

noted that the flow-density relation used for illustrating traffic fundamental diagram, usually called traffic state equation,

has a crucial impact on the traffic road operation (Haight, 1963). In addition, weather conditions, running performances of

vehicles have influences on drivers’ psychology and driving behaviors.

Eq. (12) is derived with the assumption that traffic pressure is proportional to the reciprocal of spatial headway of vehi-

cles rather than traffic density directly, and sound speed of traffic flow can be derived as c2 = (∂ p/∂ρ). Thus, denoting the

proportional coefficient by K, we have

p = K · 1

s − l
, (13)

where s = 1/ρ . Using α = lρm, its equivalent form can be expressed as

p = Kρ

1 − αρ/ρm
, (14)

when ρ = ρm, giving

K = (1 − α)pm/ρm. (15)

It can be seen that this pressure expression allows the speed of sound to be calculated from

c2 = K

[1 − αρ/ρm]2
. (16)

If the sound speed at second critical density ρc2 has a value which is identical to −ρ[u′
e]
∣∣
ρc2

= cτ , then we have (Zhang,

2003)

K = {cτ [1 − αρc2/ρm]}2. (17)

Putting c0 = cτ , Eq. (16) can be rewritten as

c

c0
= 1 − αρc2/ρm

1 − αρ/ρm
, (18)

implying that

d(c/c0)

d(ρ/ρm)
= c

c0
·
(

α

1 − αρ/ρm

)
, (19)

and

p = c20ρ ·
(
[1 − αρc2/ρm]

2

1 − αρ/ρm

)
. (20)

As spatial headway (s − l) tends to zero, the traffic pressure p→ ∞, implying that local vehicle stoppages or unex-

pected local vehicle collisions are inevitable. In this paper, we show the traffic flow acceleration evolution at some fixed
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sections. It is more direct and convenient to determine whether traffic acceleration has exceeded the empirical lim-

its (−5m/s2,1.5m/s2) (Smirnova, et al., 2015), and also whether traffic flows have been simulated reliably.

With the definition q = ρu, B1 = 2ux, and the expression of vehicular mass conservation ρt + qx = 0 under the assump-

tion (i), as described by Han (2000), ρB2 has the form

ρB2 = ρB1t + ρuB1x − 2ρB2
1,

= 2ρ(ut + uux)x − 6ρu2
x , (21)

such that

T = −p+ (ρν + µ1)ux − ρσ (ut + uux)x, (22)

where µ1 = 3ρσux = ρν1. Combining Eqs. (7), (12), and (22), the governing equations based on viscoelastic traffic flows

modeling with maximum relaxation order N = 2 become{
ρt + qx = 0,

ρ(ut + uux) = R,

R + [ρσ (R/ρ)x]x = ρ(ue − u)/τ − c2ρx + [(2Gτ + ρν1)ux]x.
(23)

From Eq. (23), it is seen that the traffic acceleration R/ρ depends on pressure gradient c2ρx/ρ , implying possible occur-

rences of negative speeds in the solutions, even in the cases of excluding the viscous and relaxation time related terms (Aw

and Rascle, 2000). As a car is an anisotropic particle that mostly responds to frontal stimuli, not completely identical to a

fluid particle, in modeling vehicular acceleration, relaxation time related term ρ(ue − u)/τ should be included. Following

the principle that all traffic waves connecting any state to its left must have a propagation speed (shock speed) at most

equal to the traffic speed, anisotropic higher-order traffic flow models have been developed and studied (Rascle, 2002; Xu,

et al., 2007).

In the viscoelastic traffic flow model, traffic pressure gradient results in the principle for shock speed mentioned above

not been satisfied, as from the view of fluid mechanics it is unnecessary to limit shock speed with the speed of Brownian

motion of fluid molecules. The use of relaxation term ρ(ue − u)/τ can decrease the probability of negative speed occur-

rences, in particular, when geometric average of 2Gτ is used to set the visco-elasticity on the mesh-faces, for instance in

the numerical simulation of a queue-stoppage at a traffic light with models having abandoned the principle for shock speed.

Similarly, in a more simple analogy to unsteady traffic flows for the case of N = 1 as in Smirnova, et al. (2014a) and

Bogdanova, et al. (2015), the governing equations based on viscoelastic traffic flows modeling with maximum relaxation

order N = 1 can be expressed as{
ρt + qx = 0,

ρ(ut + uux) = R,

R = ρ(ue − u)/τ − c2ρx + [(2Gτ )ux]x.
(24)

Traffic flow viscosity has been employed in several well known mathematical models (Whitham, 1974; Kühne, 1987;

1989; Kerner, et al., 1996; Zhang, 2003). While Navier–Stikes equations have been used to describe all viscous flows, its use

in traffic flows is not apparent. Similar to viscosity in fluid mechanics, arising from resistance to change of shear stress, it

is postulated that in traffic flow it is the drivers tendency to resist sudden and sharp changes in speed that leads to viscous

terms in traffic speed dynamics.

The interactions between multiple class vehicles (Hoogendoorn and Bovy, 2000) can be viewed as a primary and intrinsic

reason of introducing the concept of viscoelasticity in traffic flow modeling based on the constitutive relationship of non-

Newtonian fluid flow. Furthermore viscoelastic modeling of multiple class and multi-lane traffic flows is becoming common.

This paper only concentrates on the effect of maximum relaxation in viscoelastic modeling of single class traffic flows,

applying the models described in numerical tests for single lane ring-traffic flows.

To develop a conserved higher-order anisotropic traffic flow model, a pseudo-density is introduced (Zhang, et al., 2009),

avoiding the concept of named traffic pressure and sound speed. However, ascertaining details of potential of the conserved

anisotropic model needs further studies, such as the problems of initial condition of pseudo-density and the effects of

pseudo-density dependent equilibrium velocity.

To represent the propagation of an infinitesimal disturbance, sound speed cannot be ignored when traffic flow is specially

light (ρ=0) or completely jammed (ρ/ρm=1). From classical mechanics, sound speed may be defined as the isentropic

derivative of pressure to density, rather than to employ the fundamental diagram of traffic flow (Payne, 1971).

To validate the reliability and applicability of viscoelastic traffic models, it is necessary to compare numerical simulations

with the higher order model derived from car-following rule (Zhang, 2003) with the same initial and boundary conditions,

expressions for traffic pressure and sound speed.

3. Numerical method

Taking R1 = R + c2ρx instead of R, the governing Eq. (23) or (24) becomes

∂U

∂t
+ ∂F(U)

∂x
= S, (25)
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Fig. 2. Traffic pressure (a) and sound speed ratio (b) plotted as functions of density ρ . (Density and pressure are measured by ρm and ρmv2
f
respectively).

Table 1

Parameters of ring road traffic operations.

vf (km/h) ρm (veh/km) X(vf) (m) l (m) uc2(km/h) l0 (m) t0(s)

110 150 50 5.8 15 160 50.377

τ 0(s) c0/v0 ρ∗ /ρm � xImax xA xB
11.854 4.250 0.1039 3.239 780 195 585

Fig. 3. Schematic diagram of ring road traffic flow without ramps.

where U = (ρ, q)T , F(U) = (q, q2/ρ + p)T , and S = (0,R1)
T , with superscript ′T′ representing vector transpose.

The eigenvalues of Eq. (25) λk, (k = 1,2) may be expressed as λ1 = u − c and λ2 = u + c, where the Jacobian matrix is

A =

⎛
⎝ ∂F1

∂U1

∂F1
∂U2

∂F2
∂U1

∂F2
∂U2

⎞
⎠ =

(
0 1

−u2 + c2 2u

)
. (26)

While some believe that the eigenvalue should not exceed the traffic speed, the present viscoelastic model uses non-

Newtonian fluid flow analogy, such that the traffic speed involves vehicular cluster rather than a single car, the eigenvalue

limit is irrelevant. In fact, an eigenvalue represents the propagation speed of traffic waves (shock speed) and it is not nec-

essary to limit the propagation speed with respect to the speed of Brownian motion of fluid molecular particles.

For numerical simulations of traffic flows, there are many methods, such as the Lax–Friedrichs scheme (Xu, et al., 2007),

the weighted essentially non-oscillatory numerical scheme (WENO scheme) (Zhang, et al., 2006; Delis, etal, 2014), the dis-

continuous Galerkin finite element scheme (Qiao, et al., 2014), the methods used in pseudo-code design (Costeseque and

Lebacque, 2014), and the total variation diminishing (TVD) scheme (Smirnova, et al., 2017), etc. To obtain numerical solu-

tions of governing Eq. (25), the TVD scheme developed by Roe (1981) is adopted. Denoting respectively the mesh size and

ratio of time step to mesh size respectively by �xi and ω = �t/�x, the Courant–Friedrichs–Lewy (CFL) condition of TVD is

satisfied by putting

ω = CFL/max |λk,i+1/2|, k = 1,2; i = 0,1,2, . . . , Imax − 1, (27)
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Fig. 4. Spatial-temporal evolutions of ring road traffic flow density for γ = 0.125, (a) Zhang (2003); (b) N=1; (c) N=2.

where λk,i+1/2 represents the kth eigenvalue for A at xi+1/2, Imax is the maximum number of mesh, and the Courant number

CFL = 0.4 (Shui, 1998) is fixed in the numerical tests.

Linearization of non-linear source terms is a general approach in numerical treatments (Tao, 2001). With linear expan-

sion, the source term R1 at the time level tn + 1/2 can be calculated by

Rn+1/2
1

= Rn
1 + 1

2

(
∂R1

∂ρ

)n

δρn + 1

2

(
∂R1

∂q

)n

δqn, (28)

where δρn = ρn+1 − ρn, δqn = qn+1 − qn. Representing the speed and length scales respectively by v0 and �x(=l0), we have

time scale t0 = l0/v0. For simplicity, using the scaled variables as the same as the unscaled, so that for N = 1 the form of

dimensionless expression

R1 = R + c2ρx

= (qe − q)/τ + [(2Gτ )ux]x

keep unchanged, by simply neglecting the roles of viscous term [(2Gτ )ux]x in the linearization, we approximately have

∂R1

∂ρ
= τ−1

(
∂qe
∂ρ

)
,

∂R1

∂q
= −τ−1. (29)

For N = 2, R1 should satisfy the equation
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Fig. 5. Temporal evolutions of traffic flow speed (a), density (b) and acceleration (c) at x=390 for γ = 0.125, and ρ0/ρm=1/3. Note that R/ρ has a unit of

the permitted maximum acceleration 1.5 m/s2 as reported by Smirnova, et al. (2015).

R1 = R + c2ρx

= (qe − q)/τ + [(2Gτ + ρν1)ux]x − {ρσ [(R1 − c2ρx)/ρ]x}x (30)

which can be solved numerically. Similarly, by simply neglecting the roles of viscous term [(2Gτ )ux]x and elastic terms

[ρν1ux]x and {ρσ [(R1 − c2ρx)/ρ]x}x, the Eq. (29) is still established approximately. The linear expansion of R1 is just an

approach to improve the temporal discretization accuracy of Eq. (25), as reported in Ref. (Sminova, et al., 2017).

The TVD scheme has the form

δUn
i = −ω(F̂i+1/2 − F̂i+1/2) + (�t)Sni + �t

2

(
∂S

∂U

)n

i

δUn
i , (31)

where δUn
i

= Un+1
i

− Un
i
, �t(= tn+1 − tn). The numerical flux F̂i+1/2 can be calculated using the eigen vectors of Jacobian

matrix A. The calculation of F̂i+1/2 involves evaluating the coefficients of viscous term Qk(z) with an artificial parameter εk,

as outlined by Zhu and Wu (2003) and Chang and Zhu (2006).

The dependence of traffic pressure p and sound speed ratio c/c0 on the normalized traffic density ρ/ρm as shown in

Fig. 2 is calculated so that they can subsequently be used by linear interpolation in numerical tests. This methodology in

flow simulator coding is more flexible than using explicit expressions of traffic pressure p and sound speed ratio c/c0 directly,

and thus having a wider potential in applications.

4. Model comparison

To validate the reliability and applicability of viscoelastic traffic flow models described above, the traffic flow model

derived on the basis of car-following rule (Zhang, 2003) is used. By assuming τ0/τ = c/c0, and l0 = c0τ0 similar to the
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Fig. 6. Temporal evolutions of traffic flow speed (a), density (b) and acceleration (c) at x=390 for γ = 0.125, and ρ0/ρm=1/3. Note that R/ρ has a unit of

the permitted maximum acceleration 1.5 m/s2 as reported by Smirnova, et al. (2015).

Table 2

Parameters adopted in numerical tests.

Case N ρ0/ρm γ =
[

2G(τ0v0 )
l2
0

· t0
q0

]
a Case N ρ0/ρm γ =

[
2G(τ0v0 )

l2
0

· t0
q0

]
1 1 1/3 0.03125 13 2 1/3 0.03125

2 1 1/3 0.0625 14 2 1/3 0.0625

3 1 1/3 0.125 15 2 1/3 0.125

4 1 1/3 0.25 16 2 1/3 0.25

5 1 1/5 0.03125 17 2 1/5 0.03125

6 1 1/5 0.0625 18 2 1/5 0.0625

7 1 1/5 0.125 19 2 1/5 0.125

8 1 1/5 0.25 20 2 1/5 0.25

9 1 1/8 0.03125 21 2 1/8 0.03125

10 1 1/8 0.0625 22 2 1/8 0.0625

11 1 1/8 0.125 23 2 1/8 0.125

12 1 1/8 0.25 24 2 1/8 0.25

a The flow rate, speed and time scales are q0 = ρ∗v f , v0 = l0/t0, t0 = l0ρm/q0, respectively.

work of Smirnova, et al. (2017), Zhang’s model can be written as

⎧⎨
⎩

ρt + qx = 0,

qt + {q2/ρ + p+ [(2βc0) · (c/c0)](q/ρ)}x = R,

R = [ (qe−q)
τ0

](c/c0) + [(2βc0) · (c/c0)ρ](q/ρ)xx + (q/ρ)[(2βc0) · (c/c0)ρ]x.

(32)



152 J. Ma et al. / Transportation Research Part B 113 (2018) 143–163

Fig. 7. Spatial-temporal evolutions of ring road traffic flow density for ρ0/ρm=1/3, (a) γ =0.03125, (b) γ =0.0625, (c) γ =0.125, and (d) γ =0.25.

where equilibrium flow rate qe satisfies Eq. (8), sound speed ratio c/c0 is described by Eq. (19), with traffic pressure calcu-

lated by Eq. (20). The dimensionless parameter β is given by

β = ν

2τ0c20
. (33)

The numerical method for Eq. (32) is also TVD (Roe, 1981) as described in Section 3. It is noted that the discretization of

[(2βc0) · (c/c0)ρ]x is implemented by a second order upwind scheme (Tao, 2001).
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Fig. 8. Spatial-temporal evolutions of ring road traffic flow density for ρ0/ρm=1/5, (a) γ =0.03125, (b) γ =0.0625, (c) γ =0.125, and (d) γ =0.25.

4.1. Parameters and conditions

Using the viscoelastic models and Zhang’s model (Zhang, 2003), numerical simulations of ring traffic flows are performed

for validation. The road length is xImax=780, with a length unit l0 =160 m, a velocity scale v0 = v fρ∗/ρm ≈ 3.176 m/s, and

time scale t0 = l0/v0(≈ 50.377 s). Other parameters, including free flow speed, jam density, braking distance and average

length of vehicles are given in Table 1, and the 1st critical density ρ∗ is obtained from Eq. (10). The second critical speed

is assumed to be 15 km/h (Zhu and Yang, 2013), which gives � = 3.239, ρc2 = 0.7344. When the average vehicle length l

and jam density ρm given in Table 1 are used, the dimensionless parameter α has a value 0.87, for which the dependence

of traffic pressure p and sound speed ratio c/c0 on density ρ/ρm are shown in Fig. 2.

The blue-colored curve (a) indicates that traffic pressure increases with density monotonically, for α = 0.87, from p = 0

when there is no vehicles on the road to pm = 0.1957 where the road is completely jammed ρ = 1. For all free flow states
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Fig. 9. Spatial-temporal evolutions of ring road traffic flow speed for γ =0.0625, (a) ρ0/ρm=1/3, (b) ρ0/ρm=1/5, (c) ρ0/ρm=1/8.

ρ ≤ρ∗ , ρ∗ = 0.1039, traffic pressure p holds a value less then 0.2905%; for unsaturated traffic flows ρ ∈ (ρ∗ , ρs), with the

saturation point ρs = 1/e ≈ 0.368, e=2.71828, p holds a value in the range (0.2905%, 1.375%); for over-saturated traffic flows

having a density less than the second critical density ρc2 = 0.666, ρ ∈ [ρs, ρc2), p has a value located in the range [1.375%,

5.174%). It can be seen that the second critical pressure pc2 = 5.174%, beyond which the pressure increases rapidly with

traffic density, it reaches a value of about 0.1957 for ρ = 1.

The black curve (b) indicates that traffic sound speed c measured by the second critical sound speed c0 also increase

with traffic density monotonically. Even for the case when the road is empty, sound speed has a value of 0.3611. On the

other hand, when traffic flow is completely jammed, it is approximately equal to 2.777. In particular, at traffic saturation

point ρs, c/c0 = 0.531.

It is noted that the value of artificial parameter εk is set at 0.05, which is used to evaluate the coefficients of viscous

term Qk(z) in the prediction of numerical flux F̂i+1/2. The term Qk(z) is defined by

Qk(z) =
{|z|, For |z| > εk;

1
2
(z2 + ε2

k
)/εk, Otherwise.

An increase in numerical viscosity can lead to the shock profile of the reproduced wide moving jam in conserved higher-

order traffic flow model (Zhang, et al., 2009) becomes smoother and the backward moving wave becomes faster (Qiao

et al. (2014). However, numerical viscosity effects in traffic flow simulations are not obvious, as shown by the numerical

work of Delis, et al. (2014), the deviation of the calculated traffic flow curves based on a second-order MUSCL (i.e., mono-

tone upstream-centered scheme for conservation laws) scheme and a fifth-order WENO scheme is rather small, visually

difficult to distinguish. Since the source term used to describe traffic acceleration has been handled with linear expansion

to improve temporal discretization accuracy, the numerical viscosity effects in the present numerical tests should be as small

as negligible.
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Fig. 10. Temporal evolutions of traffic flow density and acceleration at x=390 for ρ0/ρm=1/3; (a) γ =0.03125, (b) γ =0.0625, (c) γ =0.125, and (d) γ =0.25.

Note that R/ρ has a unit of the permitted maximum acceleration 1.5 m/s2 as reported by Smirnova, et al. (2015).

Initial density condition is assumed to be

ρ(0, x) =
{
1.0, forx ∈ [xI − 1, xI + 1],
ρ0/ρm, Otherwise,

(34)

with q(0, x) = qe(ρ(0, x)). As shown in Fig. 3, xI (I = A,B) is calculated from values given in Table 1, with Reynolds num-

ber (Re = l0v0/ν) of 8, and 2β = 2.941 × 10−2. The viscoelasticity parameter denoted by γ =
[
2G(τ0v0)

l2
0

· t0
q0

]
, has a value of

0.125 (Smirnova, et al., 2017). The model validation is based on the comparison of numerical simulations of ring traffic flows

for two cases of ρ0/ρm=1/3 and 1/5.

4.2. Comparison of results

Traffic flow patterns in the t − x plane given by density contours are shown in Fig. 4, where (a) shows the flow patterns

based on Zhang’s model (2003), while (b) and (c) show the patterns based on viscoelastic models for N=1, 2 respectively.

The density in the blue region is less than 0.3, while in the red region it is higher than 0.7, with the cyan region having
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Fig. 11. Evolutions of traffic flow density and acceleration at x=390 for ρ0/ρm=1/5; (a) γ =0.03125, (b) γ =0.0625, (c) γ =0.125, and (d) γ =0.25. Note that

R/ρ has a unit of the permitted maximum acceleration 1.5 m/s2 as reported by Smirnova, et al. (2015). (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

values in the range of [0.3, 0.35], and the green and yellow regions being in the ranges of [0.35,0.5] and [0.5,0.7] respectively.

The similarity to the pattern obtained by Zhang (2003) model, to some extent indicates that viscoelastic traffic flow models

are reasonable.

Temporal evolutions of traffic flow speed, density and acceleration for ρ0/ρm=1/3 and 1/5 are shown in Fig. 5 and Fig. 6,

respectively. Correspondingly, any negative drop of acceleration (R/ρ) indicates an occurrence of a negative drop of speed

(u) , and a positive peak of density (ρ). It can be seen that at the point x = 390, the evolutional waves of u, ρ and R/ρ have

different shapes, although the pressure and sound speed are kept constant. However, discrepancies between the evolution

curves do not justify model reliability, as the absolute value of traffic flow acceleration in the time period t∈ (0, 377.8) is

generally less than unity, which is relevant to its permitted maximum acceleration of 1.5m/s2.

The model comparison indicates that numerical results based on viscoelastic models are reliable, with the spatial-

temporal evolutions reflecting the structures of traffic waves. The numerical results suggest that even for specially light

or completely jammed scenarios, the sound speed of traffic flow could be derived.
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Fig. 12. Evolutions of traffic flow density and acceleration at x=390 for ρ0/ρm=1/8; (a) γ =0.03125, (b) γ =0.0625, (c) γ =0.125, and (d) γ =0.25. Note that

R/ρ has a unit of the permitted maximum acceleration 1.5 m/s2 as reported by Smirnova, et al. (2015).

5. Results and discussion

5.1. Simulation parameters

Using the models described in Section 2, numerical tests are carried out to show the effects of maximum relaxation in

predicting ring traffic flows, for which parameters and conditions have been described in Section 4.1. Initial density ρ0/ρm

is assigned to be 1/3, 1/5, or 1/8 in the numerical tests, as shown in Table 2.

The initial density ρ0/ρm can be slightly lower than saturation density ρs(= ρm/e); has value of between the 1st critical

density ρ∗ and the saturation density ρs; or be slightly higher than ρ∗ . Hence, under the initial conditions for the 24

cases in Table 2, the spatial-temporal evolutions of the irregularity of initial density can lead to the generation of traffic

shock waves, with the propagation and interaction with rarefaction waves forming traffic flow patterns sensitive to the

viscoelasticity γ (=
[
2G(τ0v0)

l2
0

· t0
q0

]
), as reported recently (Smirnova, et al., 2017).
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Fig. 13. Distributions of mean density (a–b) and speed (c–d) on the single lane ring road for ρ0/ρm=1/3, 1/5.

5.2. Traffic flow patterns

For ρ0/ρm=1/3, traffic flow patterns illustrated by density contours in the t − x plane are shown in Fig. 7 for maximum

relaxation N=1 (left) and N = 2 (right). The density contours shown in (a–d) in the Flood-type form are labeled by values

of 0.3, 0.35, 0.5, and 0.7 respectively. Similar to what experimentally observed in German highways (Kerner, 1998), the

patterns given by Fig. 7 reveal that there are spontaneously generated jams, which occurred between the two initial jams

started spreading from the points near XA and XB. The spontaneous jams start to propagate forward, but for the leading one
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Fig. 14. Distributions of fluctuations of density (a–b) and speed (c–d) on the single lane ring road for ρ0/ρm=1/3, 1/5.

nearest to initially originated jam, its mergence with the backward spreading initial jam, makes a change of propagating

direction for the merged jam. The spontaneous jams promote traffic flow to enter into a self-organized stop-and-go mode.

In initial period t∈ (0, 150), the traffic shock waves propagate forward and backward. However, with the evolutions and

interactions of traffic waves, when the evolution time is greater than 150 minutes, almost all traffic shocks on the ring road

propagate backward, as can be observed by tracing the temporal evolution of higher density contours in Fig. 7(a–d).

With the increase of viscoelastic parameter γ , self-organizing ability of the ring- traffic flows increases, the traffic flow

pattern becomes more regular as a result of interaction of traffic shock and rarefaction waves. This indicates that self-

organizing ability plays a crucial role in traffic flow pattern formation. Furthermore, the traffic flow pattern is rather sensitive
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Fig. 15. Comparison of traffic speed with existing measured data at x = 390 for γ =0.0625; (a) ρ0/ρm=1/3, (b) ρ0/ρm=1/5, (c) ρ0/ρm=1/8. The observation

data are obtained from McShane et al. (1998), and the jam density for normalisation is supposed to be 200 veh/mile.

to the maximum relaxation (N) of traffic flow modeling, indicating that the numerically simulated traffic shock intensity,

shock propagation speed and spreading direction, as well as the rarefaction wave properties all depend on the maximum

relaxation (N).

On the other hand, as shown in Fig. 8(a–d), traffic flow patterns on the ring road are extremely dependent on initial

density ρ0/ρm, which examines the spatial averaged density on the ring-road. It is seen that for ρ0/ρm=1/5, independent

of the value of γ , all shock waves propagate forward, with the propagation speeds closely relating to the wave interaction

and the fundamental diagram used in the numerical test, as explained by Daganzo (1997) and recent works (Lebacque,

et al., 2007; Zhang, Wong and Dai, 2009; Lebacque and Khoshyaran 2013; Smirnova, et al., 2017). Furthermore, different

relaxation choice of N leads to different flow patterns illustrated by density contours.
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The extreme dependence of traffic flow patterns on initial density ρ0/ρm can also be seen from the patterns depicted by

spatial-temporal evolutions of speed shown in Fig. 9(a–c). The shock wave spreading direction are observed by tracing the

evolution of lower speed contours. As seen in Fig. 9(c), for ρ0/ρm=1/8, the spatial averaged density on the ring road is close

to the 1st critical density ρ∗ /ρm, all the shock waves propagate forward, but having faster propagation speeds than that

for ρ0/ρm=1/5, due to higher gradients of the speed contours. Similarly, the difference caused by the choice of relaxation

maximum N can be observed again from flow patterns given in Fig. 9(c).

5.3. Evolutions of speed and acceleration

To observe the difference caused by the choice of N more directly, temporal evolutions of density (ρ) and acceleration

(R/ρ) at x=390 are illustrated in Figs. 10(a–d), 11(a–d), and 12(a–d), where the density is measured by the jam density

ρm, and the acceleration unit is permitted maximum acceleration of 1.5m/s2 as reported by Smirnova, et al. (2015). The

evolutions of ρ and R/ρ have a synchronized property, any negative drop of acceleration (R/ρ) accompanies with a sharp

peak of traffic density (ρ), as shown in Figs. 10–12. Such evolution behavior between acceleration and density is influenced

by viscoelasticity γ , initial density ρ0/ρm, and relaxation maximum N.

As shown in Fig. 10(a–d), corresponding to the density contours given in Fig. 7(a–d), any negative acceleration drop

implies an occurrence of traffic shock wave. In contrast, any smooth part of evolution curve of R/ρ indicates that there is

a comparatively steady moving trend of vehicles motion at the observing point x = 390. Characterized by the traffic shock

wave structures on the ring-road, the density ρ at x = 390 oscillates around a mean value close to 1/3. In most cases,

acceleration R/ρ keeps a value close to zero except for the negative jumps with a height of about 0.35, suggesting that the

simulation parameters in the numerical tests are appropriate. This implies that when acceleration is beyond the limit as

reported by Smirnova, et al. (2015), the simulation results become unreliable.

The temporal evolutions of density ρ and acceleration R/ρ denoted by blue-dashed curves for N=1, do not overlap with

the evolutional solid curves for N=2, and such effects of maximum relaxation on temporal evolutions of ρ and R/ρ at x=390

can be seen more clearly than that for the differences between traffic patterns given in Fig. 7(a–d).

Coinciding with traffic patterns given in Figs. 8(a–d), 11(a–d) show the temporal evolutions of density and acceleration at

x=390 for ρ0/ρm=1/5. In comparison with Figs. 10, it can be seen that the temporal evolutional behaviors of ρ and R/ρ are

under the influence of initial density, the ρ0/ρm decrease of 1/3 → 1/5, not only brings about a decrease of density peak

value and a slight drop approximately from 0.35 to 0.3 of negative drop height of R/ρ , but also an increase of occurrent

frequency of negative drop of R/ρ . Again, the apparent separations of dashed-blue curves from solid curves in Fig. 11(a–d)

indicate the differences caused by N.

Similarly, when ρ0/ρm=1/8, from Fig. 12(a–d) it is seen that the temporal evolutions of density coincide with the flow

pattern given by speed contours in Fig. 9(c). Again, the differences caused by N can be seen clearly. In addition, when initial

density ρ0/ρm changes from 1/5 to 1/8, the negative drop of the R/ρ curve decreases approximately from 0.3 to 0.25.

5.4. Distributions of density and speed

By averaging the traffic density and speed over a time period of about 755 minutes, the mean traffic density and mean

traffic speed on the ring road can be obtained. For ρ0/ρm=1/3, and 1/5, the relevant distributions are shown in Fig. 13(a–d)

for N=1, 2 with γ =0.03125, 0.0625, 0.125, and 0.25. The distributions of mean traffic density and speed on the single lane

ring road are both sensitive to viscoelasticity γ , leading to explicitly different distributions of mean traffic density and speed.

This confirms to the finding that there exists a wide spectrum of pattern formation phenomena in traffic systems, as pre-

viously reported by other traffic flow models, such as car-following models, cellular automaton models (Nagel, et al., 1992;

Helbing and Huberman, 1998; Chowdhury, et al., 2000), gas-kinetic models and fluid-dynamical models (Nagatani, 2002).

In Fig. 13(a–b), it is seen that on the ring-road, the mean density oscillates around a value just slightly over the initial

density ρ0/ρm, with two initial traffic jams around xA and xB. The magnitude of spatial oscillation is very sensitive to the

initial density value and the decrease of initial density leads to an acute drop of the spatial variation magnitude as shown

in Fig. 13(c–d).

To show the characteristics of the ring road traffic flow in more details, the distributions of density and speed fluctua-

tions are shown in Fig. 14(a–d), here the fluctuation refers to time-average based root mean square (RMS) value of some

variable. It can be seen that density and speed fluctuations are consistent with the patterns in Figs. 7(a–d), and 8(a–d). The

fluctuations of ρ and u are not only sensitive to viscoelasticity γ and initial density ρ0/ρm, but also closely dependent on

the maximum relaxation N. As fluctuations reflect the interaction of shocks and traffic rarefaction waves, the change of γ ,

ρ0/ρm, or N causes differences in density and speed fluctuations.

As shown in Fig. 15(a–d), the instantaneous traffic speed (u) at x=390 is illustrated as a function of traffic density. In-

stantaneous equilibrium speed (ue) at x=390 determined by Eq. (8) is labeled by unfilled triangles, with measured data of

McShane et al. (1998) labeled by unfilled black squares. The comparison of speed-density relation at a given section with

measured data, shows the ring road traffic flows are sensitive to initial density ρ0/ρm, indicating that viscoelastic traffic

flow modeling gives reliable simulation results.
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6. Conclusions

In analogous to non-Newtonian fluid flow, a viscoelastic traffic flow modeling is used to predict the effects of maximum

relaxation on ring- road traffic flows numerically. The following findings are obtained:

1. As self-organizing ability of traffic flows increases with the increase of viscoelasticity, the traffic flow pattern becomes

more regular, indicating that traffic flow self-organization plays a crucial role in the determination of traffic flow pat-

terns, while the maximum relaxation brings about some effects in the pattern evolution and the interaction between

traffic shocks and rarefaction waves.

2. The simulation parameters adopted in the numerical tests for ring road traffic flows are appropriate. For unsaturated

ring traffic flows with two initial jams, there are spontaneous generated jams appearing between initial jams. The spon-

taneous jams promote the occurrence of stop-and-go traffic mode.

3. The distributions of the mean and RMS values of traffic density and speed on the ring road indicate that the character-

istics of traffic flows on the ring road depends on the initial density. For denser ring road traffic flows, almost all traffic

shocks propagate backward. When the initial density becomes smaller, traffic shocks propagate forward. When the initial

density is close to but higher than the 1st critical density, the ring road traffic flow keeps in free flow state.

4. The maximum relaxation in viscoelastic traffic flow modeling does lead to some differences in patterns depicted by

spatial-temporal evolution of density or speed. In addition, numerical tests reveals that the maximum relaxation causes

a small variation of traffic flow patterns.
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